33 research outputs found

    PEG−peptide conjugates

    Get PDF
    The remarkable diversity of the self-assembly behavior of PEG−peptides is reviewed, including self-assemblies formed by PEG−peptides with ÎČ-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized

    PEGylated systems in pharmaceutics

    Get PDF
    This review addresses the use of poly(ethylene glycol) (PEG) and PEG conjugation for the design of novel dosage forms and the modification of biomolecules. The peculiarities of PEGylated nanoparticles, liposomes, proteins, enzymes, and small drug and polyelectrolyte molecules and their influence on systemic drug delivery, including overcoming of various biological barriers and adhesion to mucosal tissues (mucoadhesion), are considered

    Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents

    Get PDF
    A series of dibromomaleimides have been shown to be very efficacious at insertion into peptidic disulfide bonds. This conjugation proceeds with a stoichiometric balance of reagents in buffered solutions in less than 15 min to give discrete products while maintaining the disulfide bridge and thus peptide conformation. The insertion is initiated by disulfide reduction using a water-soluble phosphine, tris(2-carboxyethyl)phosphine (TCEP) which allows for subsequent substitution of the two maleimide bromides by the generated thiols. Reaction of salmon calcitonin (sCT) with 2,3-dibromomaleimide (1.1 excess) in the presence of TCEP (1.1 equiv) in aqueous solution at pH 6.2 gives complete production of a single conjugate which requires no workup. A linear methoxy poly(ethylene glycol) (PEG) was functionalized via a Mitsunobu reaction and used for the successful site-specific and rapid pegylation of sCT. This reaction occurs in 15 min with a small stoichiometry excess of the pegylating agent to give insertion at the disulfide with HPLC showing a single product and MALDI-ToF confirming conjugation. Attempts to use the group in a functional ATRP polymerization initiator led to polymerization inhibition. Thus, in order to prepare a range of functional polymers an indirect route was chosen via both azide and aniline functional initiators which were converted to 2,3-dibromomaleimides via appropriate reactions. For example, the azide functional polymer was reacted via a Huisgen CuAAC click reaction to an alkyne functional 2,3-dibromomaleimide. This new reagent allowed for the synthesis of conjugates of sCT with comb polymers derived from PEG methacrylic monomers which in addition gave appropriate cloud points. This reaction represents a highly efficient polymer conjugation method which circumvents problems of purification which normally arise from having to use large excesses of the conjugate. In addition, the tertiary structure of the peptide is efficiently maintained

    Effect of PEGylation on protein hydrodynamics

    No full text
    We studied the effect of PEGylation on protein hydrodynamic behavior using hen egg-white lysozyme (HEWL) as a model protein. HEWL was PEGylated with a linear, 20 kDa PEG using reductive amination to produce PEG1-, PEG2-, and PEG3-HEWL. Near- and far-UV–CD spectroscopy revealed no significant effect of PEGylation on HEWL higher order structure. SDS–PAGE, mass spectrometry, online static light scattering (SLS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were employed to characterize the heterogeneity and molecular weights of the purified PEG-HEWL molecules, the results of which underscored the importance of using first-principle based methods for such analyses along with the underlying complexities of characterizing PEG–protein conjugates. Hydrodynamic characterization of various linear and branched PEGs (5–40 kDa) and PEG-HEWL molecules was performed using dynamic light scattering (DLS) and SV-AUC. The PEG polymer exhibited a random-coil conformation in solution with the Mw ∝ Rhn scaling relationship yielding a scaling exponent (n) = 2.07. Singly branched PEGs were also observed to exhibit random-coil behavior with Stokes radii identical to those of their linear counterparts. SV-AUC studies of PEG-HEWL showed PEG has a “parachute” like effect on HEWL, and dramatically increases the frictional drag; PEG-HEWL also exhibited random-coil-like characteristics in solution (n = 1.8). The sedimentation coefficient (s) of PEG-HEWL remained invariant with increasing degree of PEGylation, indicating that the increase in molecular mass from PEG was compensated by an almost equivalent increase in frictional drag. Our studies draw caution to using SV-AUC for the characterization of size heterogeneity of PEG–protein mixtures
    corecore